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The motion of two immiscible fluids with arbitrary viscosities flowing through a 
capillary with an almost flat fluid-fluid interface is investigated in the limit of small 
capillary and Reynolds numbers. A complete description of the dynamics of the fluids 
is presented. It is shown that the motion of the fluid away from the moving contact 
line can be completely determined in terms of one material parameter, and how the 
capillary can be viewed as a device for measuring it. The dynamic behaviour of various 
contact angles, measured by others, is calculated. It is shown that they all depend on 
the radius of the capillary; hence, they do not represent properties of only the materials 
of the system. 

1. Introduction 
West (1911) and Washburn (1921) were the first to successfully analyse the dis- 

placement of one immiscible fluid by another through a circular capillary. West, 
interested in developing a viscometer, studied the speed at which an entrapped index 
of liquid moves through a capillary when a fixed pressure drop is maintained between 
its ends. Washburn examined the unsteady rate at  which a liquid penetrates a hori- 
zontal or vertical capillary in the hopes that it would lead to a better understanding of 
flow through porous media. Although both were interested in different problems, their 
methods of analysis were the same. Their two main a.ssumptions were: (i) the liquids 
undergo Poiseuille flow; (ii) the pressure drop across the spherically shaped menisci is 
given by the same formula used under static conditions. For the simple steady flow 
illustrated in figure 1,  these assumptions imply that the pressure drop between 
z = -LA in the advancing fluid and 2 = L, in the receding fluid is given by 

where a is the radius of the capillary; pa and,uu, are the viscosities of the advancing and 
receding fluids, respectively; U is the speed of the meniscus relative to the capillary; 
y is the surface tension of the fluid-fluid interface; and 0, is the dynamic value of the 
contact angle. 

Undoubtedly, there is a certain amount of error associated with the above approach; 
for example, end effects and the influence of the viscous forces on the shape of the 
meniscus have both been ignored. However, this approach has proven to be surprisingly 

t Present address: E. I. Du Pont De Nemairs BE Company. Experimental Stetion-B/tOl, Wilmington, 
DE 19898. 
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FIGURE 1. The receding fluid is being displaced by the advancing fluid. The frame of reference is 
at rest with respect to the contact line; consequently, the capillary is moving from right to left. 

good when Uap/,u and Up/y  are small. By measuring the speed of entrapped mercury 
indices of known length and subject to known pressure drops in capillaries of various 
radii, West and Yarnold (1938) were able to determine the viscosity of mercury to 
within 7%.? Another way of assessing the accuracy of this approach is to compare 
the values of the contact angle which (1.1) predicts from experimentally measured 
values of the pressure drop, U ,  p, a, L and y ,  with that measured directly by 
optical means. Rose & Heins (1962), upon observing an index of oil moving through 
a glass capillary, found good agreement, although the scatter in their data is con- 
siderable. Blake (1968) found that the two methods always agreed to  within his 
experimental enor of 2’ for both benzene displacing water and water displacing 
benzene through a glass capillary (his experiments were restricted to very small U ,  

Besides its direct application to technology, for which West’s approach of deter- 
mining the volumetric flow rate seems to be sufficient, there remains an important 
scientific reason for studying the displacement of immiscible fluids through a capillary. 
Due to its compactness and symmetry, it  is a convenient system for studying the 
dynamic behaviour of the contact angle. Hansen & Toong (197 l) ,  based on an interest- 
ing though ad hoc hydrodynamic analysis, were the first to point out that the contact 
angle everyone measures in the capillary is probably not its actual value due to the 
fact that viscous forces may severely deform the shape of the fluid-fluid interface so 
close to the moving contact line that it cannot accurately be measured by low-magnifi- 
cation optical techniques. Instead of attempting to measure the actual contact angle 
with a protractor and an enlarged photograph of the meniscus (the technique used by 
Rose & Heins, 1962), they report their experimental findings (Hansen & Toong 
1971 a) in terms of an apparent contact angle, 8,, which is unambiguously defined in 
terms of H ,  the distance between the apex of the meniscus and the plane containing the 
moving contact line: 

104 5 up/? 5 10-3). 

v 

If the interface were shaped like a portion of a sphere of radius a/cos 8, all the way up 
to the contact line, then the angle formed between it and the capillary would be 8,. 
Using his own data and that of others for the displacement of air by various oils 
through a glass capillary, Hoffman (1975) has demonstrated graphically that the 

t Yarnold includes an extra term in his analysis to account for some of the end effects: how- 
ever, it does not improve the accuracy. 
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parameters O M ,  Up/y, and the static contact angle, e,, can be related by a single curve. 
Jiang, Oh & Slattery (1979) have found that the following function best fits this curve: 

Even though Hansen & Toong and Hoffman realized that 8, was not the actual 
contact angle, they did not recognize the fact that such an angle might not be a 
material property of the system, i.e. it might depend explicitly on the overall geometry 
of the fluid. If this is the case, then the usefulness of their experimental data is limited. 
For example, it  would not be possible to use 0, for studying the spreading of the same 
liquid over the same solid in any geometry other than the capillary. Hence, in order to 
extract material invariant information from these experiments, it is essential to 
perform a detailed analysis of the motion of the fluid in the immediate vicinity of the 
fluid-fluid interface and the moving contact line. 

Unfortunately, this is not a straightforward task. Dussan V. & Davis (1974) have 
shown that the flow field surrounding a moving contact line, modelled as a continuum 
with the no-slip boundary condition imposed at  a rigid solid wall and with an imper- 
meable fluid-fluid interface, is singular; flow fields having those properties must exert 
an unbounded force on the solid. Since this implication is unphysical, it  is necessary to 
change at  least one of the basic modelling assumptions in order to analyse the motion 
of the fluid. Several possibilities exist; however, those explored to date all involve 
introducing a boundary condition which permits the fluid to slip along the wall. 

Hocking (1977) and Huh & Mason (1977) have successfully analysed the flow field 
associated with the displacement of immiscible fluids through a capillary by using 
various slip boundary conditions to remove the abovementioned singularity. Both 
have obtained a solution valid for an almost flat fluid-fluid interface near the singular 
limit, Lila+ 0, by the method of matched asymptotic expansions. Roughly speaking, 
Li denotes the size of the region near the contact line within which the fluid slips along 
the wall; the no-slip boundary condition, corresponding to L,/a = 0, represents the 
singular limit. Hocking analysed the case of two immiscible fluids with arbitrary 
viscosities in which the relative speed of the fluid at  the wall is assumed to be propor- 
tional to the shear stress exerted by the fluid on the wall. His main conclusion, based on 
a seemingly reasonable guess for the size of the unknown slip coefficients appearing in 
his analysis, was that the magnitude of the force exerted by the fluid near the moving 
contact line is small when c,ompared with the total drag on a capillary over 100 radii in 
length. However, a detailed analysis was not necessary to come to this conclusion. We 
already know from (1.1) that the maximum effect that the dynamics of the fluid near 
the moving contact line can have on the pressure drop down the capillary is 2y/a. 
Hence, an estimate of its relative importance is given by the expression 

the evaluation of which does not require guessing the value of any unknown para- 
meters. Hocking neither analysed the first correction to the shape of the interface nor 
did he present his solution for the velocity and pressure fields. Huh & Mason (1977) 
carried Hocking's analysis one step further by solving for the shape of the fluid inter- 
face when viscosity of one of the fluids is negligible. They investigate two slip boundary 
conditions: that used by Hocking, plus a second wherein the fluid exerts no tangential 
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stress on the solid within a given small distance from the contact line, and does not 
slip on the solid elsewhere. Their major difficulty arises from the fact that the expres- 
sion they derive for the apparent contact angle contains two unknown parameters: the 
slip coefficient and the dynamic value of the actual contact angle. Consequently, when 
comparing their results with experiments they make two unjustified assumptions: the 
coefficient is lo-$ m; and the actual contact angle, under dynamic conditions, does not 
differ from its value a t  static equilibrium.? 

In Q 2 it is pointed out, based upon results of existing analyses of flow fields containing 
moving contact lines, that the motion of the fluid in the outer region, the region of 
major concern to  fluid-mechanicians, can be completely determined in terms of only 
one experimentally measurable parameter. This parameter can be used for the same 
fluids spreading on the same solid material in any geometry. In $ 3  the lowest-order 
outer problems are formulated, with this in mind, for immiscible fluid displacement 
through a capillary. Solutions are obtained in § Q  4 and 5 for the lowest-order velocity 
and pressure field and shape of the fluid-fluid interface for the case of two immiscible 
fluids with arbitrary viscosities using a technique particularly well suited for moving 
contact line problems, which differs from that used by Hocking. In  8 6 expressions are 
derived for the various dynamic contact angles which have appeared in capillary flow 
studies. Finally, in $7,  it  is shown how the parameter introduced in Q 2 can be deter- 
mined from existing data of the dynamic behaviour of the apparent contact angle 
measured in capillaries. 

2. Approach 
One of the major contributions of Hocking and Huh & Mason is the demonstration 

that flow fields containing moving contact lines can be analysed near the singular 
limit, L,&+ 0, by the method of matched asymptotic expansions. Two regions 
emerge: the inner region, located in the immediate vicinity of the moving contact 
line and scaled by L,, within which the details of the flow field are very sensitive to the 
form of the slip boundary condition; and the outer region, everywhere else and scaled 
by L,, within which, to lowest order, the fluid satisfies the no-slip boundary condition 
and the geometry of the fluid plays an important role. Although these analyses can 
predict the behaviour of experimentally measurable quantities, for example the 
pressure drop across the capillary and the dynamic behaviour of the apparent contact 
angle, they have two principal drawbacks: (i) no model for the slip boundary condition 
has been demonstrated to date to be correct for any given circumstance, (ii) the 
dynamic behaviour of the actual contact angle is unknown. The key to proceeding 
further in a quantitative fashion lies in identifying the mechanism by which the inner 
and outer solutions affect each other. 

Upon examining the analyses of Hocking (1977), Huh & Mason (1977), Dussan V. 
(1976) and Greenspan (1978),$ we find two features in common. (i) The velocity fields 
are ‘prematched’, i.e. to lowest order in L,/L, there are no non-zero constants to be 
determined by matching the inner and outer velocity fields [when domain perturba- 

t Hocking’s results contain only one parameter, the slip coefficient, beoause he makes the ad 
hoc assumption that the actual contact angle is exactly 90’. 

$ Even though the analyses of Dussan V. and Greenspan do not involve a perturbation in 
L,/L6, the following remarks are true if their analyses are viewed from this perspective. 
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FIGURE 2. Two co-ordinate systems are used: (v, z )  and (Rla,  4). The angle formed between the 
plane tangent to the interface a t  a distance R from the contact line and the plane tangent to the 
wall is denoted by 8. 

tion is used, the velocity field in the intermediate region is that given by Huh & 
Scriven (1971)l. In  this sense, one can say that the velocity field in the outer region is 
not directly affected by what happens near the moving contact line. (ii) The slope of 
the fluid-fluid interface in the outer region can be completely determined except for a 
constant of integration. Knowledge of this constant is equivalent to knowing the 
angle of inclination of the interface, 8, at a specific distance from the contact line, R; 
refer to figure 2. 

If the outer solution is valid in the neighbourhood of the contact line then the above- 
mentioned constant can be determined from the dynamic behaviour of the actual 
contact angle (B is the actual contact angle when R = 0). However, it is not; hence the 
constant must be determined by matching the inner and outer solutions for the slope 
of the interface. It is only through the slope of the interface that the motion of the 
fluids in the outer region is affected by the dynamics of the fluids in the inner region in 
the abovementioned analyses. 

In  other words, if B at R is known then the entire solution in the outer region can be 
calculated completely. If R i s  chosen to be a specific position within the intermediate 
region, the region where both inner and outer solutions are valid, then 8 must have the 
property that it i s  independent of the overall geometry of the outer region (0, and R, will 
denote the value of 8 and R at a specific position in the intermediate region). If the 
proper model for the dynamic behaviour of the fluids in the inner region were known, 
then the value of 61 could be calculated by first principles through matching. However, 
such knowledge does not seem to be forthcoming in the foreseeable future. One of our 
main objectives is pointing out that this does not present an obstacle to fluid-mech- 
icians interested in predicting the spreading of liquids on solid surfaces. It will be 
shown how to determine 8, empirically from experimental measurements of immiscible 
fluid displacement through a capillary. The capillary can thus be viewed as a device 
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from which basic information can be obtained that characterizes the spreading of 
liquids on solid surfaces. 

The key to the correctness of using this procedure to solve the outer problem in 
terms of 8, lies in the assumption that all models of the inner region, not just the ones 
cited a t  the beginning of this section, give rise to a velocity field in the inner region that 
'prematch' that of the outer region. Although the models of the inner region from 
which this assumption has been abstracted all involve introducing a slip boundary 
condition, they do in fact reflect vastly different physical mechanisms (refer to Dussan 
V. 1979, for a detailed discussion). 

3. The outer region 
The geometry and co-ordinate system are shown in figure 2. The frame of reference 

is chosen so that the fluid-fluid interface is stationary, the walls ofthe capillary moving 
with a velocity of - U2. It is assumed that the dimensionless Navier-Stokes equations 
are satisfied within both fluids: 

where K = A ,  R denotes the advancing and receding fluids, respectively; u and w are 
the radial and axial velocity components; and p + pga2z/y is the pressure within the 
vertical capillary. Each fluid must also satisfy the continuity equation: 

l a  awK 
r ar az 
--(WE)+-+ = 0. 

The outer flow field satisfies the no-slip boundary condition along the moving wall, 
so that 

u K = O ,  & = - 1  at r =  1, 14 
and if the height of the fluid-fluid interface is given by a radial function, h(r) ,  then the 
normal component of the velocity must be zero: 

while the tangential component of the velocity is the same in both fluids: 

where the brackets are defined by 

[[g(r)] = lim (gA(r ,  h - E )  - gR(r, h + E ) > ,  

g(r ,  z ) ,  represents any scalar field which characterizes the behaviour of the advancing 
and receding fluids such as pressure and either component of the velocity vector. The 

E-+O 
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dynamic boundary condition requires first that the tangential stress exerted by either 
fluid upon the meniscus be the same, 

and second that the interface have a shape such that the product of its curvature and 
surface tension balance the normal stress difference, 

The boundary conditions on h(r) are 

where 8, and R, have already been defined in § 2. We shall treat 8, as a known property 
of the system. Other parameters appearing in the above equations are: the capillary 
number, C, = Up,/y; the Bond number, B = ( p A  - ,on) ga2/y, where pd and pn are 
fluid densities; the Reynolds numbers, Re, = T.Tap,/p,; and the normalized visco- 
sities, ,ZK = p K / p A .  The dimension,a,l form of the dependent and independent variables 
are 

p y / a ;  (uU, W U ) ;  (ra, za); R;  ha. 

We shall only be concerned with the case wherein the five parameters (0, - h7r, C,, 
B, ReA, Re,) are small. Under these circumstances it is anticipated that h,(r) is every- 
where close to the plane z = 0. It is reasonable to expect that the velocity and pressure 
field, or the continuation of each field, has the property that a Taylor series expansion 
at z = 0 can be used to express values of the dependent variables at  z = h(r) (domain 
perturbation). For example, the kinematic boundary condition at the fluid-fluid 
interface becomes 

+...I = 0 at z = h(r). 
a u K  a2uK h2 

W K + x h + - - +  ...-- u"+-h+---- 
az2 2 " [  dr az az2  2 

at+ a2w=h2 

Thus all the boundary conditions at  the meniscus are transformed to conditions at  
z = 0. The fluid-fluid interface remains a t  z = h(r).  

It is assumed that the dependent variables (uK, wK, p K ,  h )  can everywhere be 
described by an asymptotic expansion valid in the limit that the five parameters 
approach zero : 

This expansion is substituted into each governing equation and boundary condition to 
create a sequence of well-posed boundary value problems. 
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To lowest order, the pressure field and interface shape must satisfy 

Vp$= 0; 

% = O  a t  r =  1-&/a; and h,= 0 at r =  1. 
dr 

The solution to the above is 

ho z 0 and p,f 5 pf (constant). 

In  a similar manner it can be shown that 

{pa A R  = pa = h, = 0 I a = B, Re,, Re,). 

The terms pF and he must satisfy 

VpF = 0; 

1 d dhe --% ( r z )  = p p - p f  a t  z = 0; 

dhe _ -  - 1 a t  r =  l-R,/a; and h,=O at r =  1. 
dr 

The solution is 
h, = +(r2- 1) and p f  = p f -  2 (constants).t 

This mode, while free of viscous effects in the outer region, nevertheless represents a 
dynamic contribution to the interfacial shape and pressure field since the value of 8, 
depends on the speed of the contact line. The lowest-order mode in which viscous 
effects are important is described by 

and 

with boundary conditions 

uF= 0 and w F =  1 at r = 1, 

and dh,/dr = 0 at r = i - R,/a, and h, = 0 at r = 1. In  the next section, a solution is 
obtained for uF and WF which is then used to obtain p E  and h,. 

t A negligible error has been introduced by neglecting terms involving RJa. 
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4. The outer velocity field 

It is convenient to introduce a stream function, $ K :  

4.1. Solution 

In terms of the stream function, the governing equation and boundary conditions for 
the lowest-order mode in which viscous effects are important become 

It is also convenient to solve this system by superposition: 

with the non-homogeneous boundary condition at r = 1 absorbed in $f: 

The solution for $F was obtained by Bhattacharjii & Savic (1965) using a sine trans- 
formation: 

(4.1) 
rI,(rs) I,(s) - r210(rs) Il(s) sin (zs) 11.H = ( -  1 ) K - 1  !Ifm { ] - ds.1 

77 0 21,(8) I,(s) - S I i ( S )  + SI?(S) 8 

Note that this flow exhibits no tangential stress at  z = 0. The functions I, and Il are 
modified Bessel functions as given in Abramowitz & Stegun (1964). 

The function @H has boundary conditions 

A general solution for $.rIt in either fluid can be found by separation of variables or in 

7 It will be established shortly that the superscript K is not necessary for @,,. 
3 Where (-l)A-l - 1 and (-l)R-l +l. 
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n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Re 8, 

0.0 
1.467 46 
1.72697 
1.89494 
2-02006 
2.11995 
2.203 12 
2.27440 
2.336 78 
2.39222 
2.442 12 
2.487 50 
2.529 11 
2667 52 
2.603 19 
2.63648 
2.66769 
2.69706 
2.724 81 
2.751 10 
2-77609 

Im 8 ,  

0.0 
4-466 30 
7-694 10 

10.874 57 
14.03889 
17.195 56 
20.34795 
23.497 70 
26.645 71 
29.792 47 
32.93831 
36.083 50 
39.228 15 
42.37238 
45.516 30 
48.65990 
51.80330 
54.94652 
58.08954 
61.23247 
64.375 26 

Re Q(8,) 

0.0 
- 9‘981 6 
- 17.3266 
- 24.404 3 
- 31.371 7 
- 38.280 1 
-45-1530 
- 52.004 6 
- 58.832 5 
- 65.6508 
- 72.455 9 
- 79.2564 

- 92.823 8 
- 86.045 6 

- 99.6144 
- 106.3922 
- 113.1692 
- 119.941 6 
- 126.709 2 
- 133.4834 
- 140.240 6 

TABLE 1. Eigenvalues and eigenfunction coefficients. 

Im C(8n) 
0.0 

- 0.5600 
- 4.105 6 
- 7.9430 
- 11.907 7 
- 15.9442 
- 20.0260 
- 24.138 1 
- 28.274 2 
- 32.429 3 
- 36.5938 
- 40.774 7 
- 44.960 1 
-49.1582 

- 57.5685 
- 61.7704 
- 65.990 3 
- 70.207 1 
- 74.435 6 
- 78.6654 

- 53.351 4 

terms of a Green’s function. Work by Smith (1952) and, later, Yo0 & Joseph (1977) 
suggests a separation of variables of the form 

where the sets {s} and {p} are eigenvalues and eigenfunctions determined by the 
boundary conditions a t  r = 1 and the requirement of a bounded velocity field at  r = 0. 
Each element of {s} must be a zero of the characteristic function g(s): 

g(s) = 21,(s) I,(s) - srg(s) + S14(S). 
Those elements with non-negative real and imaginary parts are ordered with increasing 
magnitude to form {s,}, where so = 0; the complete set of eigenvalues which has the 
required property that e i S l z l  is bounded for large z consists of {s,} U { - s,}. It can be 
shown for large n that s, N 4 In 47r(n + 4) + ni(m + 4). The values of {sn: n = 1, . . . ,400) 
were found by the secant method applied to the analytic function g(s) and the first 
twenty-one are listed in table 1. Zeros near the origin were counted by numerically 
integrating g ’ l g  about closed contours to confirm that no element of {s,} was missed. 

A sequence of functions, {a(r;  s)}, biorthogonal to { p ( r ;  s)} have been found with the 
property that if s and s’ are any two eigenvalues then 

- 
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The constants C(s,) are then determined by 

where 
Q = (g1, Cz) = (2pAr; 8) + P A C  s),p1(r; 41, 

2r~l(rs)/slo(s) - rll(rs)/Il(s) + r210(rs) / lo(~)  ) ’ T I 1  ( rs)  / u s  1 - r210(r4 /I0 (4 
P = (;;) = ( 

exhibiting the properties that p(r; s) = p ( r ;  - s) and p(r ;  s) = p(r ;  a). In  addition, it 
can be shown that k(s)  = - I ~ ( s ) / s 2 1 ~ ( s )  for s = s,. For the problem at hand, and 

are identically zero on z = 0, so that (3.2) can be integrated to give 

where the C(s,) can be calculated for any specified a2@II/az21z=o. Since a2yFI/az2 = 0 
on z = 0, the function r ( r )  = ( 1/r)a2~,,/az2),=, represents the entire tangential stress 
on z = 0. This is the same in both fluids, which justifies the removal of the superscript 
from 

All that remains is to calculate r.  Upon combining (4.2), (4.3) and (4.4) it  is found 
that r must satisfv: 

where 

(4.5) 

Equation (4.5) is solved approximately by assuming r has the form 

The first term on the right-hand side of the equation represents the anticipated 
singular behaviour which r must have near the contact line in order for the velocity 
field in the outer region to ‘prematch’ that of the inner as discussed in $2. 

The sets of coefficients {a:: m = 1, . . . , N }  for different values of M were obtained by 
substituting the above expression for 7 into (4.5) and minimizing a numerical approxi- 
mation to the z2 norm of the residue: 

= 0 for m = 1 ,..., M .  (4.6) 

The difference between the left- and right-hand sides of (4.5) corresponding to a dis- 
continuity in the radial component of the velocity at  z = 0, [u0] for M = 1,2,3,4 
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r 

FIGURE 3. The magnitude of the discontinuity in the tangent component of the velocity at the 
interface,I[uo]lz=o, decreases in value as the number of trial functions increases in number; curves 
A, 0 and correspond to two, three and four trial functions, respectively. 

is illustrated in figure 3. As M increases in value, the error uniformly approaches zero. 
This is also illustrated by the behaviour of 7 M -  r4 in figure 4, where 

- 

(4.7) 7 4  i 5'452r - 4.860r + 1.336r3 + 1.063r5 - 0-348r7. 
1 - r 2  

The corresponding values of {C(sn)}, which are the same for both fluids, appear in 
table 1. The radial velocity of the fluid at  z = 0, uf( r ,  0) ,  can readily be calculated from 
its definition: 

along with the identity 
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, ,  l ~ l ~ l ~ l ~ l ~ l ~ l ~ l ~ l  - 
-. '. ./- - --- ------ 

0 0.2 0.4 0.6 0.8 1 .o 
r 

FIUURE 4. The solid line __ corresponds to the tangent component of the surface traction vector 
evaluated at the fluid-fluid interface when four trial functions are used, r4; ---, 7l- r4; ----, 
7a - ,-I ; __ _ _  -, 7a - +. 

and an evaluation of a@/az],,, obtained from (4.1): 

-A @ 1 = 1.0168r - 0.3206r3 - 0.0561r6 
r az zsi.o 

+ 0.0225r7 - 0.0259r8. 

The above expression is accurate to within an absolute error of 0.0003, or 0.05 yo of its 
maximum value. 

An integral representation of $11 was also obtained by finding the Green's function, 
see appendix A. This form, though somewhat cumbersome, was useful in evaluating 
properties of the solution at  z = 0, where the sum of the eigenfunctions shows poor 
convergence. In addition, a grid of and ?,kII values is displayed in table 2; this may 
be used to estimate velocities a t  any point within the two fluids. 

4.2. Discussion 
The streamlines within the receding fluid are shown in figure 5 for both large and small 
values of pn. It is interesting to note that a stagnation point is predicted within the 
less viscous fluid along the axis at a distance z, = 0 from the flat interface. Figure 6 
gives the dependence of z, on the viscosity ratio; note that its largest value, zs 2 0.25, 
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FIGURE 5. Constant streamlines within the receding fluid are given in (a) for 
PR % PA and (b )  forPR Q P A .  

occurs in the limit as the viscosity ratio approaches zero. An internal stagnation point 
of this sort has been observed by Dussan V. (1977) for glycerine displacing mineral oil 
through a circular tube. 

It has been noted by Hocking (1977) that, when the two fluids have the same vis- 
cosity, the velocity at z = 0 is everywhere zero. The flow field is the same as that 
occurring when a flat-headed plunger displaces a fluid out of a circular tube. This 
problem has been solved numerically by Wagner (1975) who represents values of the 
stream function for Re = 10. His values are consistently smaller in magnitude than 
ours, differing up to 2.3 yo along r = 0.5, and 4-8 yo along z = 0.549. This discrepancy 
is probably due to the fact that our results correspond to Re = 0; although his solution 
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@A - PR ) / (PA -k P R  

FIGURE 6. A stagnation point is located within the less viscous fluid at ( 0 , ~ ' ) .  

is clearly in error in the region where the face of the plunger meets the wall (he calcu- 
lates a finite drag on the wall which should clearly beinfinite subject to his assumptions). 

Figure 7 gives the difference, a t  a distance R = 0 . 0 5 ~  from the contact line, between 
the velocity field and its anticipated asymptotic form: 

where 

This is the solution given by Huh & Scriven (1971); however, they did not recognize 
that it represented the velocity field of the fluids within the intermediate region. Upon 
repeated evaluation of the difference a t  decreaaing values of R, it is found to be O ( R )  
as R -+ 0. It has also been established through numerical calculations that 

- 1 6  a 
r(R/a)  G - x - - 0.08 + O(R/a) 

n2-4 R 
as R/a+ 0 

and 

% 1-34+O(R/a) as R/a-+O. 
r araz ll=o 

Hocking (1977) also anticipates a solution in terms of {p} but does not make use of 
the dual {a} to evaluate his complex coefficients {C(sn)}. Instead, he makes the residue 
of truncated sums for the stream function and radial velocity discontinuity at z = 0 
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%IT 
FIUURE 7. The difference between the outer and the anticipated asymptotic expression in 
limit as r + 1 and z + 0, AvR, can be evaluated a t  a distance R = 0 . 0 5 ~  from the contact line 
both components of the velocity vector using {[a,  b ] :  a = r ,  z ;  b = I, 11}, 

the 
for 

orthogonal to a set of cylinder functions all zero at r = 1.  His sole published result, an 
asymptotic form for the integrated tangential stress on the solid wall, is in substantial 
agreement with our findings. However, a more thorough presentation of his results 
would have been useful. 
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FIGURE 8. The slope of the meniscus within the intermediate region is calculated by balancing 
the forces acting on the fluid body enclosed by ---. 

5. The pressure field and interface shape 
The experimentally measurable quantities are: the pressure drop across a fixed 

length of capillary necessary to create a given volumetric flow rate, and, assuming the 
capillary is transparent, the shape of the fluid-fluid interface. These quantities are 
related through the integral form of the equation of conservation of linear momentum. 

The difference in pressure between any two points on either side of the fluid-fluid 
interface can be calculated by using (3.1) along with the solution for the velocity 
field presented in $4. If the points are located more than two diameters from the 
interface, then 

where Apca denotes the pressure drop across the interface along the axis of the cap- 
illary, pga(O, 0) -pga(O, o). The constant term - 1*965 is due to that part of the solution 
given by @I; hence, it was evaluated by performing a double integral numerically. The 
second constant, - 15.278, coming from kIr was evaluated by extrapolating to z = 0 a 
series representation whose convergence is very slow at the point (0,O). These coeffi- 
cients represent deviations from the parallel flow pressure field in the vicinity of the 
interface. 

The constant A p ,  can be calculated by balancing the forces exerted on the body of 
fluid contained between the planes given by z = - LA/a and z = LR/a, excluding the 
fluid within a fixed distance R of the moving contact line; see figure 8. It is assumed 
that R lies somewhere within the intermediate region. The force balance to within 
O( R) as R --f 0 becomes 

-7T(p& (-2) -pgu k)) A 0. 

The first bracket gives the force exerted on the body of fluid by the walls of the capil- 
lary, where the constants were determined by extrapolation procedures similar to 
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those of Hocking. The second bracket expresses the surface and viscous forces exerted 
on the body by the excluded fluid within the arc R, evaluated from an expression 
correct to O( 1). The final bracket gives the force exerted upon the ends of the body. The 
above equation can be interpreted as a representation of the shape of the interface 
within the intermediate region 

+ 0 ~ 8 8 ~ ) .  (5.1) 

This can be used to evaluate the boundary condition (dhca/dr)~, .~l-RI~a = 0. This con- 
dition determines Ape,: 

While balancing the forces exerted on the above material body of fluid has provided 
a convenient method for calculating the tangent to the interface shape in the intermed- 
iate region; in order to determine dh,/dr elsewhere, the normal stress balance a t  
z = 0 must be integrated. The part. due to $I is obtained by inverting numerically the 
appropriate sine-transform; the part due to $11 is calculated both by extrapolating 
the integrated normal stress eigenfunction series to z = 0, and by the direct evaluation 
of the Green's function formulation at  z = 0. Fitting polynomials with the desired 
asymptotic form to these two components, we have 

+ (1 - r 2 )  (1.409r - 0.076r3 + 2.078r5 - 2.287r7) . (5.2) 1 
The maximum error in the expression multiplying FA + j i R  is 0.002 based on evalua- 
tion a t  r = (0.05, 0.10, ..., 0.95); for the pA,iiR/(,iZA +FUR) part, the maximum differ- 
ence from the Green's function results at  the same points is 0.012. 

Of course, the pressure drop and local shape of the interface given above represent 
only the lowest-order mode in C,. The complete expressions must include the other 
small parameter terms: 

- L A / a )  -PR(r2? + LR/a)  

- 2 ( 4  - 8 4  + C a [ P & h  - W a )  -PEa(r21Gz141, (5.3) 

dh - - r($n-OJ+C,-. dhCa 
dr dr (5.4) 
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6. Dynamic contact angles 
Besides the actual contact angle, 8, four other contact angles have been introduced: 

Ow, defined by (1.1); O,,, defined by (1.2); &&M, the angle introduced by Huh & Mason, 
defined by the relationship cos OHaM = - a%, where Z is the mean curvature of the 
fluid-fluid interface evaluated at its apex; and 8,, the angle of inclination of the fluid- 
fluid interface a t  a distance R, from the contact line (refer to $2).  We are now in a 
position, in the light of the results of $5, to examine their dynamic behaviour and to 
calculate their interdependence. 

In  a static system all of the abovementioned angles are the same: however, when the 
contact line is in motion we find 

upon combining (1.1) and (5.3); 

upon combining (1.2) and (5.4); and 

upon combining the above-stated definition of B,,, with (5.2). For completeness, we 
present a relationship between 8, and 8 based upon a solution of the motion of the 
fluids in the inner region in which a particular slip boundary condition is assumed: 

refer to appendix B for details. The angles in the above expressions are in radians, and 
the trigonometric functions have been linearized about in. 

It is interesting to note that the dynamic behaviour of all three apparent contact 
angles - 8,, 8, and 8H&M - is influenced to some extent by the geometry of the outer 
region as evidenced by the appearance of the parameter a in the bracketed expressions 
on the right-hand side of (6.1), (6.2) and (6.3). Consequently, these angles do not 
represent material properties of the system. This is not surprising when one recognizes 
that each of these angles is calculated from a quantity which depends on the dynamics 
of the fluids in the outer region: 8, is calculated from the pressure drop down the 
capillary; Olcf is calculated from H ;  and OH,, is calculated from the mean curvature of 
the meniscus a t  its apex. The dependence on geometry becomes explicit when any one 
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-----_____ -----___ - 
I I I I , ,  1 1 , , , , , , ' , , 1  

--__ 

1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
r 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
r 

FIGURE 9. The solid curve in (a) and (b )  is the solution for the meniscus when p~ Q pA,  and 
p~ = pA,  respectively. In  both cases it is assumed U ( p A + p ~ ) / y  = 0.02 and 0, = 90' at  
R,/a = 0.001. The dashed curve is a segment of a circle passing through the apex, h(O), and the 
contact line. 

of these apparent contact angles is evaluated for two systems identical in every way 
except that the radius of the capillaries is different, for example, 

This difference is due entirely to the independence of the size of the inner region on the 
value of a. Note that no parameter which depends on the model of the inner region 
appears in the above expression. 

The entire effect of the fluid motion in the inner region on the experimentally 
measurable quantities B,, B,,, and appears in the dynamic behaviour of the inter- 
mediate angle, 0,. Two factors contribute to 4, as illustrated by (6.4): (i) the dynamic 
behaviour of the actual contact angle, 0, and (ii) the bending of the meniscus in the 
inner region due to hydrodynamic forces. The latter directly depends on the mechan- 
ism used to remove the singularity a t  the contact line. It is evident from (6.1), (6.2) 
and (6.3) that measurements of the pressure drop and H can, at  most, be used to deter- 
mine the dynamic behaviour of 4: they cannot be used to deduce anything about the 
nature of theJEuids in the inner region or the dynamic behaviour of 0. 

That the various contact angles can take on different values is illustrated by the 
following example. Consider a capillary of radius a = 0-05 cm through which fluids 
are moving a t  a speed of U(pA +,uE)/y = 0-02 with an intermediate angle 8, = 90" at a 
distance R, = 0.5 x m from the contact line (this choice of parameters is consistent 
with Hoffman's correlation). Two cases are calculated, that of pUlz = 0 and p A  = pR. 
The solid lines in figure 9 (a ,  b )  represent the solution of the shape of the interface. 
The dashed lines represent segments of spheres which pass through the apex of the 
meniscus and the contact line. Even for this low value of the capillary number the 
meniscus deviates somewhat from a spherical segment. The angle formed between the 
dashed line and the wall, eM, is 98" (102")$, while that determined by the pressure drop 

t To our knowledge, experimentally measured values of 
$ These correspond to pR = 0 and pLR = pA, respectively. 

have yet to be reported. 
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-I - 0~0001 
FIGURE 10. The shape of the meniscus in figure 9(a) very close to the contact 

line assuming L ,  = 0.5 x 10+'cm. 

down the capillary, Ow, is 96" ( l O l " ) . t  Nevertheless, if a tangent to the interface is 
drawn close to the contact line on figure 9, following the procedure of Rose & Heins 
(1962), the angle measured with a protractor is approximately 94' (96"). This is smaller 
than the apparent contact angles, but larger than the intermediate angle, 8,. For the 
sake of demonstration, if we use the inner solution presented in appendix B with 
L,, = LgR = 5 x m then the shape of the meniscus close to the wall is given in 
figure 10. The actual contact angle, given by (6.4), is 82" (76O), which differs quite a 
bit from the angle formed by the dashed line. 

7. Discussions and conclusions 
An appropriate value for R, has yet to be established. The only property which it 

must have (refer to $2)  is that i t  lie 'well within' the intermediate region, i.e. the 
region where both inner and outer solutions are valid. However, the size of this region 
and the degree to which both solutions coincide depends on the value of L,/L$. If it  is 
assumed that flow through a capillary with the inner region modelled as in appendix B 
typifies flow in any geometry with any model of the inner region, and that L, 5 m 
and L, 2 10-5 m, then a good choice is R, = 0.5 x 10-6 m. This is illustrated by com- 
paring the values of the slope of the interface as predicted by the inner and outer 
solutions for the example cited at the end of $6; refer to table 3. The two solutions 
differ by less than & 0.5" for 5 x m < R < 5 x 10-9 m (note that the minimum in the 
meniscus at R z 5 x m (refer to figure 10) occurs in both solutions). It should be 
remembered that dynamic apparent contact angle measurements cannot be reproduced 
to better than 

It can easily be seen how the displacement of immiscible fluids through a capillary 
can be used as a device for obtaining basic modelling information that is necessary for 
solving boundary-value problems involving the moving contact line. For a given 
material system, two immiscible fluids and a solid, the dependence of H on the'speed 
of the contact line can be measured. This is sufficient, together with a detailed fluid- 
mechanical analysis of the outer region, to calculate the dynamic behaviour of 8,. 

For the case in which H/a < 1, 8,( U )  is obtained by substituting the experimentally 
determined I?( U )  into the expression: 

1" and 2". 

t It is interesting to note that 8, and OM can have similar values even though they both differ 
from 8. Hence, Blake's reported experimental agreement between these two angles does not imply 
that he is measuring the dynamic behaviour of the actual contact angle. 
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0.02 
0.20 
1.0 
2.0 

10.0 
20.0 

100.0 
200.0 
1 03 

2.0 x 108 
104 
2.0 x 104 
4.0 x 104 

r 

arctan 

90°+ arctan - arctan 

0.999 999 8 81.96' 
0-999 998 82.49' 
0.99999 83.72' 
0.999 98 84.50' 
0.99990 86.66' 
0.99980 87.66' 
0.999 90-ooo 
0-998 91.01' 
0.99 93.35O 
0.98 94.36' 
0.9 96.68' 
0.8 97.68' 
0.6 98.67' 
t Calculated from (B 3). 
$ Calculated from (5.4). 

- 4-19' 
- 1.49' 
- 0.41' 
- 0.19' 
- 0.02' 
- 0.01 ' 
- 0.00' 
- 0.02" 
-0~10' 
- 0.18' 
- 0.82' 
- 1.68' 
- 5.05' 

TABLE 3. -The slope of the interface in the intermediate region for C, = 0.02, p~ = 0, a = 500 pm,  
L, = 5 x lo-* pm, R, = 0.5 p m ,  BI = 90'. 

The implicit dependence of H (  U )  on a cancels the explicit dependence of the bracketed 
expression on a. In  order to predict the spreading of the same liquid on the same solid, 
however, in a different geometry, for example a drop of liquid (pa) spreading over a 
planar surface initially covered with fluid (,uR), one need only solve €or the dynamics of 
the fluid in the outer region. The boundary condition that 0 = O,( U )  at a distance R, 
from the contact line is sufficient for determining the shape of the meniscus in the 
outer region to O(C,); no ad hoc assumption need be made about the deformation of the 
meniscus in the inner region (a case in point is Greenspan, 1978). 

On the other hand, knowledge of the dynamic behaviour of 0, does not represent 
sufficient information for the physical chemist who is interested in identifying the 
mechanism by which liquids spread on solids. Although it can be used to establish the 
inadequacy of a given model of the inner region for a particular material system, it does 
not contain sufficient information to identify either the dynamic behaviour of the 
actual contact angle or the mechanism by which the singularity a t  the moving con- 
tact line is removed. 

Until experimental techniques are discovered which can probe the inner region, 
parameterizing the outer region in terms of the empirically measurable quantity BI 
appears to be an adequate approach for fluid-mechanicians interested in analysing flow 
fields with moving contact lines. 

The authors are grateful for the support received from the National Science Founda- 
tion under grants ENG75-10297 and ENG77-10167. 
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Appendix A 

the z co-ordinate 
An integral expression for $rII can be obtained by taking its sine-transformation in 

and 

$&, z )  = qII(r; s) sin (sz) ds 
= o  

valid for 0 < z < 00 and 0 < r c 1. The transformed Stokes-Beltrami equation and 
boundary conditions are. 

z=o 
and 

l d q 1 1 -  0 a t  r =  1.  $11=0, ;7- 
- 

At the plane z = 0 the boundary conditions are 

pII = 0, :p = 7(r) .  

It follows directly that 

Appendix B 

axial velocity (from the moving reference frame) is given by 
We shall, for illustrative purposes, calculate the inner solution assuming that the 

where the parameters LSA and LsR are slip lengths in the advancing and receding fluids, 
respectively. This model was used by Dussan V. (1976) for a single liquid. Given such.a 
model with its associated inner length scale LSm (Lsm = max LsR in this case), the 

appropriate inner problem can be generated by resealing the independent variables x 
K = A ,  R 
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and R reduced to Stokes flow in two dimensions, provided that L J a  is very small 
(Huh & Mason 1977). 

Expanding as before in small parameters and using the polar co-ordinate system 
introduced in figure 2, the two-dimensional form of the inner interface shape is 
expressed as 

h(R/a) N (6( V )  - in) R / a  + C, h'$y'(R/a), 

where hi,na"er is determined by the zero-order inner velocity field satisfying 

and 
&inner 
L = O  at R = O ,  

dR . 
where ( - 1 ) A  = - 1  and ( - 1 ) R  = + 1 .  

mation. We find the transformed steam function 
A solution for OKis obtained in a straightforward manner using the Mellin transfor- 

where Q, which represents the transformed tangential stress on q5 = 0, is given exactly 
by 

2n(s + 1)2 ([LsA/a]S+l + [L,,/u]s+~) cosec (ns) see ins  
(s + i ) 2  tan gsn + s(s + 2) cot 4s. P A  + P R  

To obtain q5 the inverse transform is used: 

The radius of curvature of the interface within the inner region is equal to the sum 
of the pressure and normal viscous stress differences across q5 = 0. This is integrated 
exactly to give 

where h, as before, represents the z location of the interface, though now as a function 
of Rla, on q5 = 0. 

Since our objective is to derive a relationship between 6( U )  and 6,, all we need eval- 
uate is d h g y / d R  in the limit as R/Ls-+ rn because 

19-2 
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where R, lies somewhere within the intermediate region. 
Restating equation (B 1) in terms of the solution for 

F. Y .  Kafka and E .  B.  Dussan V .  

gives 

where 
vo + to, s uo-{a, 

[cosec (ns) sec @s] z-(s+Qds; g(z) = 4- i 

and 

as 
uo+(m z++l)(s + 1)2 cosec (m) sec I p s  s voo--(m (S + + S(S + 2) cot2 ins 

f(z) = -4 i  

for - 2  < v,, < - 1 .  
The function g has been evaluated in closed form by Dussan V. (1976) : 

4 R  
g(R/L,) N -1n-+O G l n g )  aa R/L,+co. 

n L, 
Upon numerical evaluation of the function f we found that 

It is also possible to show that 

Upon substituting the above expressions into equation (B2) we get 

For the case of jiR = 0, the slope, d h p / d R ,  has been solved exactly (Dussan V. 
1976) giving 

a- d h  e(u)-2+c, 4(R/LsA)3  

dR (1 t$kA)2- ([l+ (R/L8A)2]2 

We make use of the above expressions in $56 and 7. 
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